G-Optimal Design with Laplacian Regularization
نویسندگان
چکیده
In many real world applications, labeled data are usually expensive to get, while there may be a large amount of unlabeled data. To reduce the labeling cost, active learning attempts to discover the most informative data points for labeling. Recently, Optimal Experimental Design (OED) techniques have attracted an increasing amount of attention. OED is concerned with the design of experiments that minimizes variances of a parameterized model. Typical design criteria include D-, A-, and E-optimality. However, all these criteria are based on an ordinary linear regression model which aims to minimize the empirical error whereas the geometrical structure of the data space is not well respected. In this paper, we propose a novel optimal experimental design approach for active learning, called Laplacian G-Optimal Design (LapGOD), which considers both discriminating and geometrical structures. By using Laplacian Regularized Least Squares which incorporates manifold regularization into linear regression, our proposed algorithm selects those data points that minimizes the maximum variance of the predicted values on the data manifold. We also extend our algorithm to nonlinear case by using kernel trick. The experimental results on various image databases have shown that our proposed LapGOD active learning algorithm can significantly enhance the classification accuracy if the selected data points are used as training data.
منابع مشابه
Seidel Signless Laplacian Energy of Graphs
Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...
متن کاملSIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملLaplacian Energy of a Fuzzy Graph
A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...
متن کاملAn interior-point method for topology identification and optimal design of noisy networks
We study an optimal control problem aimed at achieving a desired tradeoff between the network coherence and communication requirements in the distributed controller. Our objective is to add a certain number of edges to an undirected network, with a known graph Laplacian, in order to optimally enhance closed-loop performance. To promote controller sparsity, we introduce `1-regularization into th...
متن کاملApproximation of Optimal Control Problems in the Coefficient for the p-Laplace Equation. I. Convergence Result
We study a Dirichlet optimal control problem for a quasi-linear monotone elliptic equation, the so-called weighted p-Laplace problem. The coefficient of the p-Laplacian, the weight u, we take as a control in BV (Ω) ∩ L∞(Ω). In this article, we use box-type constraints for the control such that there is a strictly positive lower and some upper bound. In order to handle the inherent degeneracy of...
متن کامل